
DOCUMENT RESUME

ED 296 703 IR 013 330

AUTHOR Schwartz, Steven; And Others
TITLE An Empirical Study of a "Metacourse" To Enhance the

Learning of BASIC. Technical Report.
INSTITUTION Educational Technology Center, Cambridge, MA.
SPONS AGENCY Office of Educational Research and Improvement (ED),

Washington, DC.
REPORT NO ETC-TR87-7
PUB DATE Sep 87
CONTRACT 400-83-0041
NOTE 60p.
PUB TYPE Reports - Research/Technical (143)

Tests /Evaluation Instruments (160)

EDRS PRIrz MF01/PC03 Plus Postage.
DESCRIPTORS Cognitive Processes; Error Patterns; High Schools;

*Instructional Effectiveness; Intermode Differences;
;Iodels; Pretests Posttests; *Programing;
:luestionnaires; Teacher Attitudes; *Teaching Methods;
*Transfer of Training

IDENTIFIERS BASIC Programing Language; *MetacourEes

ABSTRACT
This study examined the effectiveness of a metacourse

consisting of eight lessons interspersed over a semester-long
beginning course in BASIC and aimed at providing mental models,
problem-solving strategies, key concepts, and other heuristic
structures. The experimental group consisted of 6 teachers who taught
9 classes of a total of 132 high school students; the control group
consisted of 9 teachers who taught 13 classes of a total of 239 high
school students. Data collection included a student questionnaire on
previous experience with computers, a pre/posttest to assess general
cognitive skills at the beginning of the term and possible transfer
effects at the end, classroom observations, an end-of-semester test
on BASIC, and homework assignments. Analysis focused on teachers'
fidelity to the metacourse lessons, the impact of instruction on the
students' mastery of BASIC, and the transfer of cognitive skills from
programming to other domains. Results showed that teachers were
faithful to the lessons and found them quite teachable. Experimental
group students made significantly fewer errors on the test of BASIC
and did significantly better on all major categories of problems.
Etridence of transfer that was observed was limited to a particular
problem similar to the programming tasks. The appendices include
examples from the metacourse manual, the cognitive skills
pre/posttest, the BASIC test, the classroom observation sheet, and
the student questionnaire. (34 references) (Author/MES)

Reproductions supplied by EDRS are the best that can be made

from the original document.

TR87-7

I

U.S. DEPARTMENT OF EDUCATION
Othce of Educational Research and Improvement

EDUCATIONAL RESOURCES
IC/

INFORMATION
CENTER (ER

"(This document has been reproduced as
received horn the person or organization

originating it.
0 Minor changes have been made to improve

reproduction Quality

Points ot inew or opinions st at ed in tznsdocu-

ment do not necessarily represent (Act&
OERI position or policy

AN EMPIRICAL STUDY OF A "METACOURSE"

TO ENHANCE THE LEARNING OF BASIC

Technical Report

September 1987

lidocatiesel Tedsology Calder
Harvard Graduate School of Education

337 Gutman Library Appian Way Cambridge MA 02138
(617) 495-9373

2

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Beth Wilson

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

An Empirical Study of A "Metacourse"
to Enhance the Learning of BASIC

Technical Report
r September 1987

Prepared by:

Steven Schwartz
D.N. Perkins
Greg Estey

John Kwidenier
Rebecca Simmons

Programming

Group Members

Naomi Bolctin
John Bumette
Susan Cohen
Greg Estey

John Kruidenier
Doug McGlathery
David Niguidula
David N. Perkins

Rebecca Simmons
Steve Schwartz

Tara Tudc

Preparation of this report was supported in part by the Office of Educational Research and
Improvement (Contract # OERI 400-83-0041). Opinions expressed herein are not necessarily
shared by OERI and do not represent Office policy,

BEST COPY AVAILABLE

3

ACKNOWLEDGEMENTS
s

The "Metacourse" discussed here is the product of the Programming Group at the
Educational Technology Center, all the members of which are thanked for their many
contributions. Ellen Mandinach of the Educational Testing Service suggested certain test
items for the cognitive skills test. We would especially like to thank Bill Bower, Julie
Hochstadt, Kathy Hollowell, Patricia Jones, Kathy Moore, Nancy Samaria and Paul Shapiro
for their contributions both in and out of their classrooms in the development and
assessment of the Metacourse materials.

4

Table of Contents

Introduction 1

Method 3

Results 12

Discussion 20

References 25

Appendices 28

An Empirical Study of a "Mefacourse" to
Enhance the Learning of BASIC

Enhancing instruction in an existing subject matter on a wide scale is a conspicuous and

rarely met challenge of contemporary education, and for understandable reasons. On the one
hand, the subject matters bring with them a number of conceptual challenges and problems of
metacognitive control that require careful study to disclose and careful instructional design to
remedy. On the other hand, however artfully fashioned better instruction may be, wide-scale
implementation must run the gauntlet of a number of impeding factors - teacher training, cost of

materials, institutional inertia, and so on.

A desirable program of research would address notonly the learning of a subject matter but
also the practical problems of implementation as part of a unified program of inquiry. During the

past several years, we have tried to conduct such an investigation into the pedagogy of
programming. Through clinical studies and teaching experiments, we have sought to understand
better the factors that interfere with beginners' mastery of programming in BASIC and LOGO and
to devise instructional methods that enhance their learning (see e.g. Perkins, Farady, Hancock,
Hobbs, Simmons, Tuck, & Villa, 1986; Perkins, Hancock, Hobbs, Martin, & Simmors, 1986;
Perkins, Hancock, Hobbs, Martin, & Simmons, 1986; Perkins, Martin, & Farady, 1986). Regarding
implementation, we have tried to couch our instructional methods in a format called a
"metacourse," designed from the first to address some of the daunting problems of wide-scale
disserninability (Perkins, Farady, Simmons, &Villa; Perkins, Schwartz, & Simmons, in press).

This paper describes a large-scale experiment examining the effectiveness of the
metacourse we have developed in enhancing high school students' learning of BASIC. The
positive results can be taken as support for the general analysis of the difficulties of programming

developed in our earlier work, and for the viability of our approach to educational change. Before
detailing the experimental method and results, we describe briefly the context established by our

prior work.

learriingnroblems in

It is plain that computer programming poses special challenges. Like mathematics and
physics, programming is a precision-intensive subject matter, requiring meticulous care with

details. Programming is also problem-solving intensive, student activities focusing almost entirely
on resolving programming problems. While today this is typical of mathematics, physics, and

certain other science subjects, we note that any, school subject can and perhaps should be

treated in a problem-solving intensive way. Finally, programming is not just problem-solving

intensive but "design intensive." That is, students have to construct whole complex products that
do certain jobs, not ;us! derive particular answers like 35 cm/sec or A-17. In today's schools,
complex products appear mostly in art (the works themselves), Euclidean geometry (proofs), and
English and Social Studies (essays). Again, we note that any school subject can and perhaps

should emphasize the construction of complex products.

6

2 Programming

It is hardly surprising that a precision-intensive, problem-solving intensive, and design-
intensive subject matter should give many students considerable difficulty. In recent years,
evidence has accumulated that a high percentage of students in elementary and high school
achieve only extremely limited mastery of programming even after a semester or two of instruction

(see e.g. Mawby, 1987; Pea, 1986; Pea & Kurland, 1984a; Pea & Kurland, 1984b; Kurland, Pea,
Clement, & Mawby, 1986; Kurland, Clement, Mawby, & Pea, 1987; Boner & Soioway, 1985;
Soloway & Ehrlich, 1984; Sleeman, Putnam, Baxter, & Kuspa, 1986). In seeking to summarize

and synthesize our own and others' findings In this area, we have found it useful to characterize
students' difficulties under three broad headings: fragile knowledge, a shortfall in elementary
problem solving strategies, and problems of confidence and control.

Fragile knowledge. "Fragile knowledge" refers to the fact that students commonly display

partial knowledge, considerable inert knowledge (not evoked in contexts of need but retrievable
with cueing), and garbled knowledge (concepts used in the wrong place, in inappropriate hybrids)

of program - Perkins, Hancock, Hobbs, Martin, and Simmons (1986) discuss fragile

programrk lunwledge in detail, emphasizing the importance of distinguishing between fragile
and missing knowledge: Students typically have much more knowledge than they use well. If
students could somehow activate their inert knowledge and perform internal cross-checks of

garbled knowledge, they might perform substantially better.

Elementary problemsolvino strategies. By asking themselves elementary "problem

management" questions like 'What am I trying to do now," "do I know a command that could help,"

"exactly what does the line of code I just wrote do if I hand execute it," and so on, students might

make better use of their fragile knowledge base. Clinical experiments reported in Perkins,
Hancock, Hobbs, Martin, and Simmons (1986) and Perkins, Martin, and Farady (1986) suggest

that this is so. Unfortunately, students do not appear to probe with such questions as often as

they might, a shortfall in elementary problem-solving strategies.

Confidence and control. Finally, students often evince motivational problems that interfere

with their controlling well their own problem-solving processes. For example, many students
simply disengage from programming problems and commence a side activity or seek help as soon

as the least difficulties emerge. These "stoppers" as we have called them are often quite capable

of continuing on non-directive prompting, but do not seem to recognize their own abilities

(Perkins, Hancock, Hobbs, Martin, & Simmons, 198E3).

One way or another, efforts to enhance instruction in programming should address the triple
problem of fragile knowledge, strategic shortfall, and confidence. Note that these difficulties as

described here do not force wholesale reconsideration of what is taught in elementary
programming instruction. After all, the key commands, the fundamental operating procedures,

and so on, surely need to be taught. Instead, the shortfalls identified could be taken to invite

some sort of "booster shot" some treatment to enhance the learning set and strategic repertoire

students bring to the enterprise of programming.

7

Programming 3

The notion of a metacourst

With this point in mind, we introduce the notion of a "metacourse." The goal of a metacourse
is to provide mental models, problem-solving strategies, key concepts, and other structures that
may help students to understand more deeply and wield more artfully the knowledge they are
acquiring during their regular instruction in a subject matter. In particular, the Metacourse in
Programming discussed here offers students a mental model of the computer and how it works at

a level appropriate for understanding BASIC and its operation, a strategy for understanding new
commands and relating them to the mental model of the computer, several strategies for breaking
programming problems down into subproblems of various sorts, and other concepts and tactics
designed to help students deal with the difficulties identified earlier (Perkins, Schwartz, &
Simmons, in press).

The metacourse is not a course a complete remaking of the usual instruction. Rather it

functions in a "meta" way, infusing a few important and often neglected conceptual elements into
"business as usual." Thus, the Programming Metacourse is organized to allow the teacher to
introduce key concepts periodically as the term advances and students gain a knowledge base in
BASIC. This infusion process, together with the metacognitive emphasis, are the factors that
distinguish metacourse design from conventional curriculum redesign.

Why might a metacourse offer an approach to enhancing instruction that evades some of the
implementation difficulties outlined earlier? In comparison with a new course altogether, a

metacourse is much more compact and its materials much less expensive. A metacourse does
not displace, but merges smoothly with, existing materials and instructional practices.

Accordingly, we suggest that a metacourse lends itself to wide-scale dissemination easily more

than most efforts at curriculum reform.

The results of a preliminary study reported in Perkins,Farady, Simmons and Villa (1986)

indicated that the Metacourse was eminently teachable, with no major problems of teacher
preparation. While there was some encouraging evidence that the Metacourse was having its
intended effect, the data from this formative study were far from conclusive.

In the following pages, we report on a large scale experiment involving a number of treatment
and control classroom attempts to provide further evidence on the effectiveness of the
Metacourse in settings where emphasis is placed on infusing the key concepts into the teacher's

presentations throughout the entire course.

Method

Setting

The Programming Group's second empirical study of the Metacourse was conducted within
the context of another Educational Technology Center study, the "Laboratory Sites" project. This
broader study, described in detail in another report, aimed to involve the teachers using the
Metacourse (as we!! as interventions in two other subject matter areas) in the discussion and
evaluation of the educational innovations they were implementing in their classrooms.

8

4 Programming

Participation in the Laboratory Sites project meant that the teachers using the Metacourse

received more support in their efforts to adapt the new materials to their own styles and

classrooms than would normally be the case. The main extra supports were: monthly meetings
with the research team to discuss issues pertaining to the implementation of the Metacourse;
frequent contact with a research assistant or the Laboratory Sites project liaison assigned to the

Programming Group; access to all Educational Technology Center personnel, as well as each
other, via a personal computer communications network and a small stipend in compensation for

their participation in collaborative research.

Although not all of these supports may have been significant for all of the teachers in the

experimental group, taken together they constitute an enriched support environment not
normally present, and not present in our control sites. The control site teachers, however, were
not faced with the problem of introducing and infusing new, innovative materials into their well

practiced normal BASIC curriculum.

From the standpoint of the research, the participation of the Programming Group in the
Laboratory Sites project created opportunities for very precise and timely feedback from teachers

about the effectiveness of the different lessons in the Metacourse. This feedback, which would
not otherwise have been available proved to be extremely valuable in guiding further revisions to

the Metacourse.

=Jests
The experimental group consisted of 6 teachers of BASIC, who taught 9 classes and 132

students at 5 high school laboratory sites. The control group pool consisted of 9 teachers who
taught 13 classes and 239 students at 8 control sites. The large control group was used so that
the groups could be matched if necessary on the basis of the general cognitive pre-test if overall
pre-test scores indicated that one group or the other was significantly more able. The difficulties

in data analysis encountered in the first empirical study, in which the control group proved much

more able on the general cognitive measures, might thus be avoided.

All teachers were experienced programming instructors, beginning the semester with at least
2 years of previous experience teaching BASIC classes. All of the classes were straightforward
programming classes, meeting on average 5 times a week for forty-minute periods throughout

one semester.

procedures

Teaching Inferventkm

All of the experimental group instructors met with the Programming Group staff and research

assistants early in the semester in order to go over the Metacourse materials and procedures.

Each teacher was introduced to a particular research assistant who would observe two

Metacourse lessons and one non-Metacourse lesson.

9

Programming 5

As described in the introduction, the Metacourse is a series of instructional lessons
designed to enhance and supplement the material typically covered in a first-semester BASIC
course. One major concern is to provide students with a clear mental model of the computer in

the BASIC environment and to he students internalize and employ the model when appropriate.

Another goal of the Metacourse is to provide students with programming-specific skills and a
conceptual framework that guide the student in initial understanding and subsequent application
of material learned in class.

The eight lessons are designed to be interspersed throughout the semester. Preliminary
lessons provide students with a visual model of the computer and equip students with the
conceptual framework for understanding commands, a framework that involves thinking of a

statement in terms of its purpose, syntax, and action (semantics). Later lessons deal with
strategies for writing good programs including breaking programs down into manageable chunks,
thinking of code in terms of functional units called *patterns", and regular use of checking and
debugging strategies. The components of the Metacourse are described in more detail below.

The " oaper computer: A visual model of the computer. The concept of a mental model is

key in the design of the Metacourse. Recent work in the field of cognition underscores the
importance of helping students construct robust models in various domains (d. Beveridge &
Parldns, 1987; Gentner & Stevens, 1983; Johnson- Lakid, 1983; Mayer, 1976, 1981). Further,
empirical work in the pedagogy of computer programming suggests that a stronger mental model
of the computer can result in increased programming performance (DuBoulay, 1986; DuBoulay,

O'Shea, & Monk, 1981; Mayer, 1976, 1981,1985).

In the Metacourse, students learn a visual model of what happens inside the computer

during program execution to help them interpret exactly what the various BASIC commands do
(See Appendix A). The model is designed to help counter some of the problems of fragile
knowledge and strategic shortfall we noted in students in our clinical work. Regular use of the

model WI learning commands and in envisioning the effects of single lines or chunks of code

should serve to help build a robust knowledge base of command effects. In addition, the modal
can provide students with a fairty simple strategic tool for debugging. Using the visual model to

imagine precisely the actions of the computer at a trouble spot gives stoppers a tool to help them
get moving again and may assist haphazard movers by providing a focus for their activities.

Specifically, the model depicts variables and their values, characters on the screen, and flow
of control. The model is functional rather than technical in nature in an effort to promote visibility
and simplicity in the model (d. DuBoulay, O'Shea, & Monk, 1981; Beveridge & Parkins, 1987).

Thus, for example, the student thinks of a variable as the name of a box in memory with a number

or character string in it. This model is called the 'piper computer," because students receive
paper forms displaying the visual model on which they hand execute programs. In addition, an on-

line version of the paper computer is being designed, a tutorial that presents the same visual
model of the computer and steps through a program line by line, making the requisite changes in

the computer state as each line is executed.

Pumose-syntax-action: A framework for program constituents. In the Metacourse students

also learn an analytical scheme for understanding commands and command lines. The scheme

10

6 Programming

encourages students to consider the command's purpose, its legal syntax, and its action in the
computer world as shown on the paper computer. The purpose-syntaxaction framework is used

to he students recognize, attend to, and organize the important features of a new command
when it is first encountered. Additionally, the framework serves as a problem-solving aid when
students write programs. In considering how to accortplioli a particular programming task
students are asked to think carefully about what commands they know whose purposes may
accomplish the task at hand. When writing command lines, students are encouraged to attend to
the syntax, and to envision the action of the command, that is, the effect of the line on the
computer. Students are also encouraged to use erninimanuar, a quick reference guide that
includes the key BASIC commands organized according to the purpose, syntax, and action
questions, with examples (See Appendix B). As students gain programming experience and
become comfortable in using the framework for individual commands, they are introduced to the
utility of employing a similar organizational strategy for larger "patterns" of code. (Patterns will be

discussed below.)

The choice of terms in the framework is derived in part from the contrast between
programming pragmatics, syntax, and semantics, and in part from a model for learning developed

by Perkins (Perkins, 1986a,b). Purpose has a major role in the Mad as a means to counter some of

the probliims of fragile knowledge, ispedficaky that of inert knowledge. In earlier clinical studies it
was found that often students had a knowledge of relevant command structures, but could not
i-etrieve them, apparently failing to make the connection between what needed to happen in the
progntm and the commands that would serve the purpose (Perkins & Martin, 1986; Perkins,
Martin & Farady, 1986). The attention to syntax is based on earlier observations noting the degree

to which BASIC and LOGO program performance among novice programmers can be affected by
problems of a purely syntactic nature (Perkins, Farady, Hancock, Hobbs, Simmons, Tuck, & Villa,
1986; Perkins, Farady, & Martin, 1986). The emphasis on the action or semantics of a command

tine stems from the desire to help students construct and utilize a robust knowledge base of
command effects as described above in the discussion of visual models.

Banamsabugnakundjoaddiggsgmmands. The Metacourse emphasizes the
importance of organizing programming knowledge not only in terms of individual commands but

also in terms of mukiple lines of code that work together to accomplish a particular task or subtask.

Such recurrent schema are caked "patterns," a term roughly synonomous with the "programming
plans" described by Solway and colleagues (Soloway & Ehrlich, 1984; Joni & Soloway, 1986).

Patterns provide an intermediate level of analysis between the whole program and individual

command lines, and offer a way of helping students to organize and comprehend code used for
frequent programming tasks such as counter variables, certain compound conditional branches,
and so forth (See Appendix C). The Metacourse stresses the importance of patterns as an
intermediate level coding strategy as well as a debugging atrategy.

Edimajzograrmainning,ggangahodshLandiktaglog. Test results and teacher
comments from our previous study indicated that students needed acid:Jona' instruction in
planning and writing whole programs. Thus the revised Metacourse provides students with a
procedure for writing programs that emphasizes the importance of planning, checking, and
debugging in addition to the actual coding of a program. Mother major point of emphasis is that
writing programs is a process of refinemem, involving multiple rounds of these four activities.

11

As a first step in top-level planning, students are encouraged to think in terms of
"interactions" with the user. The interaction refers to the sequence of convArter outputs and user

inputs that occurs as a user uses a program. This heuristic offers a concrete beginning point for
the novice programmer, who frequently experiences difficulties in moving from a given problem

statement to the initial stages of the task decomposition. For many programs, an outline
according to the "rounds" of interaction provides a decomposition into subunits that amount to
subproblems in the programming task. An initial focus on interactions as the student begins to

program can he to avoid the frequent problem of moving from a problem statement directly to a

coding phase without sufficient thought and effort devoted to planning.

From this initial breakdown of the problem, students are asked to conceptualize program

sections in terms of the patterns that might serve the section purposes. The patterns provide the
student with the tools to manage and create code above the level of a single command line.

Students are taught the utility of having a repertoire of patterns that are portable across programs.
Thus, for example, if a student recognizes the need in a program to implement code that will trap
unreasonable inputs from the user, the student can call on a "bulletproofing" pattern to he with

that task. This simple pattern includes a conditional branch that rejects inappropriate inputs,
prompting the use for another input.

At each level of the planning and coding stages students are encouraged to consider the
purpose of chunks of code and the action those chunks actually effect Students are taught to
check their code, mentally simulating the action of the program line by line to catch the "easy"

bugs before the program is actually run and tested. The Metacourse also emphasizes that bugs
and debugging are an inevitable and integral aspect of program production, not a reflection of

poor programming.

Assessment

A pretest in general cognitive skills was adminittered at the beginning of the term. At the
end of the term, the cognitive skills test was readministered to test for possible transfer effects,
and a general BASIC skills test was given to test for mastery of BASIC. Both tests are described

below.

rgggabialgilLerefeggijbLIZ. A cognitive skills test was developed with
two purposes in mind. First, such a measure might be expected to correlate with programming
performance (most cognitive skills are interrelated), and thus serve as an indicator of level of

general student ability in comparing treatment and control students. In addition, it seemed
sensible to probe the possibility of transfer of cognitive skills. In general, findings on transfer from
programming have been negative (Kurland, Pea, Clement, & May.loy, 1986; Mawby, in press; Pea

& Kurland, 1984a,b: Solomon & Perkins, in press), nor was the Metacourse specifically designed
to promote transfer, However, there have been occasional positive findings (Clements, 1985;
ci. -. its a G.ilo, 1984) and the issue has great currency, warranting an effort to examine the

of transfer in trio present study.

nitive skills instrument was designed to test skill in formai syllogistic reasoning,

.4, IleasonIng (e.g. "ff the day after tomorrow were Thursday, what would the day

. -12

8 Programming

before yesterday be?"), field-independence and planning (a task of counting the numberof

triarigles in a complex diagram). In addition, the test incorporated an algebraic version of the well-
known students-and-professors problem (Clement, Lochhead, & Monk, 1981) where students

typically have great difficulty translating a simple algebra word problem into an algebraic equation.

Soloway and his colleagues have suggested that computer programming experience may help
students deal with this sort of problem more effectively (Ehrlich, Soloway, & Abbot, 1982;
Soloway, Lochhead, & Clement, 1982). A further item relating to accuracy and precision of
observation and description, required the student to accurately describe a cor *, lex geometric

figure in order for another student to be able to recognize it amongst a set of similar complex

geometric figures.

The cognitive skills test also included a problem of a type quite similar in character to a
programming problem involving combining patterns in a program-like way. Students had to
generate a description of some events using a restricted language containing the words "repeat"

and " decide ". (The design of these problems was suggested by Ellen Mandinach of the
Educational Testing Service); in prior research, when the rare case of transfer from programming

has been found, it has emerged most often on tasks with marked similarity to programming (cf.

Kurland, Pea, Clement, & Mawby, 1986; Linn, 1985).

Finally, in addition to the purely "cognitive" aspects of the pretest, we also included a series

of questions designed to address a particular attitudinal factor, locus of control (Rotter, 1966).
Research in this area (Dwodc & Bempechat, 1983; Dweck & Licht, 1980), as well as studies of

performance in the programming domain (Perkins, Martin & Farady,1986; Zelman, 1985), point to

the importance of attending to feelings of confidence and control in student performance. Thus

we included a 10 question subtest derived from the "attribution of intellectual responsibility scale"

(Rotter, 1966), measuring intemality/externality of control in positive and negative intellectual

situations.

BASIC Test (Ancendbc E j. The BASIC test was a fairly standard paper and pencil

programming test, comprising 16 items. The problems were formulated to evaluate certain

general programing skIlIs the ability to hand-execute, debug, break a problem into subtasks as

well as to test knowledge about programming commands typically presented in an introductory
BASIC course (e.g. PRINT, LET, INPUT, FOR/NEXT, IF- THEN). The test was also designed to

include certain language independent bugs identified by Pea (Pea, 1986) .

The first nine problems tested simple production and recognition skills, usually requiring

production of only one line of 3ASIC code using one command statement. The last seven
problems included three hand-execution problems, one debugging problem and three longer
programming problems requiring somewhat more complex structures such setting up counters,

use of for-next loops and the like. The 16 problems are briefly des ribed below.

SIMEdeMilinitaIMMa0113201b1= (1 9):

1. FRINT-string; The student is asked to write the code that would result in a specific
string
being printed on the screen.

2. PRINT-number A specific number is to be printed on the screen.

13

Programming 9

3. INPUT-number A user is prompted to type in a number.
4. LET - number. Set a variable to a number.
5. LET-expression: Set a variable to the result of an operation.
6. LET-string: Set a variable to a string.
7. IF/THEN: If a given condition holds, print an expression.
8. FOR-loop: fill in blanks to complete a simple For/next loop.
9. GOTO: Fill in a blank to complete a Goto statement.

Hand execution problems (10, 11 and 13):

10. Given a short program, show what will appear on the screen when the program is
executed.

11. Garden path: Same as 10 above, except that what will appear on the screen when
the program is executed is not what one would expect the hand-executor is led
down a garden path.

13. Parallelsm bug: Same as 10 above, except that the student is given a program in
which the individual commands are correct, but are presented in the wrong order.
This was designed to test for skill in recognizing what Pea (1985) calls a parallelism
bug, the assumption by programmers that the computer is able to execute more than
one line of code simultaneously (in which case order would not be important).

DRhunnina problem (12 see also problems 11 and 13):

12. Egocentrism bug: The student Is given a program with an INPUT statement missing
because they often assume that the computer is aware of what they are thinking

Production problem (14 -16):

14. FOR-loop: Using a FOR/NEXT loop, vide a program that wiN print the numbers 1
through 10 on the screen.

15. 1F-loop: Same as problem 14, except that the loop is created using an IF statement
16. Complex: The student is asked to write a more complex program that requres an I

INPUT statement inside a FOR loop that accumulates a sum.

Classroom Observations

Researchers conducted classroom observations at all treatment sites, systematically

recording a number of features of the classroom dynamics and instructional style, as well as items
related to the Metacourse treatment itself. Observations included two Metacourse lessons, as well

as one regular class, in each case conducted by a single research assistant assigned to observe

one or two teachers. Assignments of multiple observers to a class were not made for two reasons.

First, we wished to be as non-obstrusive as possble and thus each teacher and class could get
comfortable with a single outside observer. Second, since our main comparsons were between

Metacourse and non-Metacourse lessons in the same classes, inter-rater reliability was not an

issue.

The majority of the items on the observation instrument (see Appendix F) were rated on

7-point LNcett scales (where 7 is the highest rating and most desirable score). These included

situational factors such as student- teacher and student-student interaction, student
responsiveness and engagement, and teacher presentational style. Items relating specifically to

the Metacourse included fidelity to the Metacourse and infusion of Metacourse concepts into the
Metacourse lessons. In the area of classroom interactions, the scales measured amount and

14

10 Programming

quality of interactions between students and teachers and among students. Two types of
student participation were scored, the degree to which students engaged in process- and
product-oriented participation. Students (as a group) were also rated on preparedness for the
material presented. Teachers were also rated on mode of instruction (e.g., presentational,
interactive) and on degree of comfort with the material presented. Observers noted whether the
instruction included any bridging activities between programming and other academic disciplines
or real-life situations. Finally, observers used the 7-point scale to give an overall rating of

effectiveness of instruction.

In the observations of Metacourse lessons, fidelity to the lessons was rated, based on

adherence to various aspect. of the lesson (introduction, lecture, participation, explanation, and
exercises). The Metacourse lessons were also rated according to the degree to which the basic

principles of the Metacourse had been integrated into the lesson.

Student Questionnaire

At the beginning of the semester, students filled out a short questionnaire designed to help
assess their previous experience with computers and computer programming (See Appendix G).
Items were designed to determine the students' general experience with computers in the
schools, with computers in the home, and in other outside activities (e.g., computer camps). In
addition, students were asked to report previous experience in the BASIC programming language

as well as other programming languages.

Homework

Most of the nine Metacourse lessons included worksheet problems for students to complete
in class and homework assignments to be completed outside of class between lessons. The task
of sending homework and worksheet papers to ETC was rotated among the teachers so that, for

each lesson, different teachers were asked to return their students' papers. These were xeroxed

and returned as soon as possible to the teachers.
Teachers returned 83% of the sets of student homework and worksheets asked for (25 out of
30). Teacher response was better toward the end of the Semester than the beginning. Each
students homework was *graded" and the total number of students making a particular number of

errors on each problem was recorded.

Coding Procedures

Cognitive Pretest-Posttest. The cognitive test included several types of problems. The-

days-of-the-week problems and the students-and- professors (formula) problem were scored

either 0 for oorrector 1 for incorrect. In the triangle-count problem, the correct answer was scored

0. If the student reported more than the correct number of triangles, the score was the excess

with a minus sign; if fewer, the score was the shortfall with a plus sign.

The description-of-geometric-figure problem and the repeats-and-decides problems
required special conventions because of the complexity of possible responses. In the geometric

15

Programming 11

problem, the following categories were scored: 1) right figure kept, 2) geometric shape omission,
and 3) position omission. If the correct figure was kept the student scored a 0, and one point was

added for eac. shape in excess kept. For the shape category, the student scored a 0 for correct

description of shapes, 1 if one shape was omitted, 2 if both shapes (square and rectangle) were
omitted. If the correct positioning of the squares was correct the student scored a 0, 1 for one of

the relationships was missing, 2 if both relationships (top-bottom/spread out) were omitted.

In the repeats-and-decides problem, form, order and content were defined as scoring
categories. form referred to the writing of commands in the correct format. Order referred to the
correct ordering in a sequence of commands. ran= concerned whether the student's repeats
and decides "program* would do the assigned task. All categories were scored 99 if the student
did not try the problem. Otherwise the categories were scored on a 0 to 4, where 0 designated a
perfect answer, 1, a single error and so forth up the scale to 4 which indicated insufficient data/
misunderstood task or for the form category, repeats and decides not used.

The Attribution of Intellectual Responsbility scale was scored in the usual manner in terms of
which alternative (internal or external locus of control) was chosen on the 5 positive and 5

negative intellectual situations.

eAsalest. The students' performance on the BASIC test was scored in a number of

different categories. Many of the categories only suited certain problems, for instance, the
counter category only applied to problems that included a counter. Each of the 16 problems was

scored for errors by noting whether or not a student's response included certain specific features.
Responses to Problem 1 (PRINT-string), for example, were scored for two features, or error
categories. To be error free, a response needed to include a correct PRINT command (the first
error category) as well as a quoted string (the second category). The sample response (1) below

would be scored as having 0 errors it is correct. Response (2), however, would be scored as

having 1 error the PRINT is correct, but the quote category is scored as incorrect because the first

quotation mark is missing.

(1) PRINT "the answer is car
(2) PRINT the answer is cat"

Some prob!ems called for an "extraneous statements" category. This was scored when an extra
statement or set of statements was added to the program, which may or may not have resulted in

an error, but showed clearly that the student had an improper model of machine semantics.
Several other categories corresponded to the use of various program constructs; for instance the
positioning of PRINT statements, FOR-NEXT statements and the like. The number of error
categories scored for a problem ranged from one in problem 9 (the fill-in-the-blank GOTO

problem) to ten in problem 16 (the complex production problem).

Scoring Procedure. Using the scoring system described earlier, 4 scorers on the cognitive

test and 2 scorers on the BASIC test worked independently to code the students' responses to
the test, crosschecking periodically with one another and establishing policies to clarify the
scoring system. The coding was blind with respect to whether the response came from the
treatment or control group, or from a pre or post-test. While every student response was not

12 Programming

coded by all scorers, the scorers all coded and discussed a random subsample. Policies that
could affect prior scoring were applied retroactively.

After about ten percent of the data had been scored the scorers deemed themselves to be
adequately calibrated. The remainder of the coding provided the basis for calculating interjudge
agreement. Disagreements were discussed and resolved, though original scores were retained
for calculating the agreement. All the coding was used for the data analysis in other respects, on

the grounds that divergences had been discussed and resolved and principles applied
retroactively to the coding before the calibration. These procedures resulted in very high
interjudge reliabilities on both tests with correlations of .90 or greater in all cases.

In order to determine whether any'of the judges tended to score significantly higher or lower
than the others, the mean score and standard deviation for each judge were calculated and
compared for the totals on both the BASIC and Cognitive tests. In each case ANOVA indicated
no significant differences among the judges. Therefore, for those tests that were multiply scored,
the judges scores were averaged, while for those tests that were scored by only one judge, that

score was used in all analyses.

Results

Fidelity to Metacourse Lessons as Written

Of critical importance in evaluating any educational intervention are questions related to how
it is actually implemented. We observed a number of Metacourse, and non-metacourse lessons

taught by each teacher in order to assess how the teachers and students responded to the
materials. We found that the teachers covered the content of the Metacourse with good fidelity,
usually rated around 5, where 7 was described as teaching the material "almost exactly as written"

and 4 indicated "the same or very similar content of lesson as written, but adapted and
paraphrased". This was consistent with the rating observed in our preliminary study, also about 5.
It appears that the lessons were either paraphrased or presented in a manner very similar to now

they were originally written.

Teachers were usually rated as covering three quarters of the material in each lesson quite

adequately and also as referring appropriately during the Metacourse lessons to the major

principles stressed in the Metacourse, ie. the paper computer, purpose, syntax, action, patterns,
with the exception of the minimanual whish was very rare's), mentioned. Thus the minimanual may

be an underutilized resource, at least in terms of its integration into the instructors' presentations.

In contrast to the generally good coverage of the lessons and principles of the Metacourse,
teachers had much more difficulty in pointing out bridges or applications either to other academic
disciplines or problems in real life. Such bridges were noted in only about 10% of the classes,

whether they were Metacourse or non-Metacourse lessons.

17

Programming 13

Homework

The primary purpose for the homeworic/worksheet analysis was to determine whether or not

teachers and students were actually able to use the assignments. The analysis indicated that they

were. Students seemed to find the assignments appropriate and of reasonable levels of difficulty.

The secondary purpose was to determine where the Metacourse lessons might be
improved. In general, the homework analysis was most useful in detecting problems, not

strengths, in the Metacourse and was best interpreted in conjunction with teacher comments.
This analysis, along with teacher comments was used in preparing notes to be used for teachers

in a future study in which potential problems in implementing the Metacourse could be

addressed.

Some specific problem; noted during the analysis included the following: (a) a number of
students had difficulty hand oxecuting simple programs that included PRINT and LET statements
containing expressions; (b) many students did not adopt the pointer that the Metacourse

suggested they use to keep track of the current line during hand execution; (c) PRINT/INPUT

combinations cortused many students the PRINT statement preceding the INPUT statement

often interfered with hand execution of the INPUT statement; (d) the Assume User Types area of

the computer world was not used by some students, perhaps because this was not explicitly
modeled by teachers; (d) many students did not attempt to identify patterns in problems,
presumably because they did not understand this concept; (e) a common hand execution
problem with somewhat more complicated programs was to miss one of the many required steps

(e.g., changing a variable in the Variables Area of the Computer World each time it is encountered

in a FOR/NEXT loop). Many of these same difficulties manifested themselves later on in the

BASIC end of semester test.

Differences between Metacourse and Ordinary Lessons

As in our previous study, observations from the experimental sites were examined for
differences in student and teacher behavior when Metacourse lessons were taught as compared
to when ordinary lessons were taught. Of particular interest were any major differences in what
went on in class during such lessons and whether these seemed disruptive or beneficial. Since in
each case the observations of a particular class were made by a single observer who was not blind

to the type of class being conducted, these results must be interpreted with caution. However, it
should be noted that the observers were generally quite experienced, the variations reported
between teachers were not large, and the general pattern of results obtained appears quite

reasonable.

There were few surprises in the results we obtained. As in our previous study the teachers
seemed somewhat more comfortable when presenting their own lessons (mean rating of 6.9)

compared to the new Metacourse material (mean rating of 5.8). However both scores are quite

high (7 point scale) indicating general comfort with both old or new material. As before, we found

large differences between teachers' styles, with non-Metacourse lessons rated as almost twice as

interactive (60% vs. 32%), while somewhat less presentational (26% vs. 15%) than Metacourse
lessons. During Metacourse lessons the data suggest that more time was spent in lecture (25%

vs. 12%), demonstrations (20% vs. 11%), and in hand execution exercises (21% vs. 9%), and

18

14 Programming

less time in discussion (23% vs. 40%), and "other exercises (18% vs. 48%). Student behavior
during both types of classes was rated as quite responsive, attentive, engaged, and interactive
with their teachers (ratings generally over 5 in both types of classes; however, there was
apparently more interaction among students during the non-Metacourse lessons (mean rating of
5.4 vs. 3.4). No differdnces were observed in terms of the nature of such interactions, with both
teachers' and students' interactions described as process-oriented and product-oriented about
half the time, with very little disciplinary interaction occurring at any time. Students seemed quite
prepared for either type of lesson (5.1 for the Metacourse, and 5.7 for non-Metacourse lessons).
Finally, despite the differences that were noted, the overall effectiveness of each type of lesson
was judged quite high (5.4 for Metacourse, and 6.0 for nonMetacourse lessons).

Group Differences

The findings above seem to indicate that despite differences between normal and
metacourse lessons, the Metacourse materials were adequately covered although both the
observations and teacher self reports indicate considerable difficulty in making connections

between the material and other academic and life problems.

However, assessing the impact of the Metacourse also requires equivalence of the treatment

and control groups on other factors that might influence programming achievements, or statistical
corrections as needed. Consequently the data were examined by group to check for significant

differences extant before the treatment.

: .1.: : I I IC. I : I- I, A II 6 I IA* r: 1111 I Most of the students in

both groups had little previous experience with programming languages. Three quarters of the

experimental group and 84% of the control group had no previous exposure to BASIC. Those
few with experience, however, had minimal exposure (typically a week or two here or there). While

24% of the experimental group had some experience with another programming language
compared to only 5% in the control group (p<.05), this consisted in all but 2 cases in each group
of a brief exposure to LOGO, some years back. Finally a little less than half our subjects in each

group (44% in the experimental and 49% in trot, controls) had a computer in their home. Thus with

respect to these types of experiences the groups seemed not substantially different.

Cognitive Pre-Test. The cognitive test was assumed to be an indicator of general ability that

might relate to later BASIC performance, and in fact significant positive correlations were obtained

in both groups (p<.01) in the expenmental group and (r..40, p<.01), in the control group.

The Analysis of Variance indicated no significant difference in homogeneity of slopes between
the two groups (F. 1.345, n.s.).

Overall the control group performed significantly better than the experimental group (p<.01),
commiting on average about 12 errors comparod to 16 errors for the experimental group. The

range was from about 6 tc 29 errors in the 9 experimental classes compared to 5 to 16 errors in the

13 control classes (A more detailed analysis of subtests is presented later when the issue of

transfer is considered.)

19

Programming 15

Thus the control group appears to be of somewhat higher ability than the experimental
group, yet as the data will indicate the experimental group performed significantly better on the

BASIC test administered at the end of the course.

Impact of Instruction on Mastery..12Z=

Tablel (next page) indicates the performance of experimental and control groups in terms of
mean errors on each of the 16 BASIC Test problems as well as subtotals for four types of
problems and the total test. Despite the apparent higher general ability level in the control group
the experimental group averaged about 5.5 fewer errors, nearly half a standard deviation overall,
than the control group. They produced about 77% correct responses compared to about 66% for

the controls (a maximum of 61 errors was possible).

Furthermore, the experimental groups did significantly better than the controls on all major
categories of problems, with the smallest advantage owing on the simple one line command
problems and the production problems (about a third of a standard deviation), and the largest on

the hand execution problems (nearly two thirds of a standard deviation).

Results for individual problems within three of the major categories Hand execution,

Debugging and Production show that the experimental group had significantly fewer errors on

every problem except one requiring the use of art IF/THEN statement to create a loop

(Problem15). In fact, both groups found it more difficult to write a program using IF/THEN after
being asked to create a program that generated identical results but used the more natural FOR

loop (Problem 14).

Interestingly, there was also no significant difference between the two groups on the

IF/THEN problem within the other major category Simple one line commands. The only

problems within this category for which there were significant differences included one which

asked students to set a variable to a string (Problem 6), one requiring the completion of a
FOR/NEXT loop (Problem 8) Ind one in which students needed to recognize when a GOTO
statement was needed (Problem 9). These last two problems (8 and 9) differed from the other

problems within this category because partial code was provided that, presumabiy, needed to be
read and understood before being completed. In this respect, perhaps, these problems were

similar to the Hand-execution problems.

The BASIC test problems described above often contained the same features or error
categories. This allowed us to undertake a finer analysis of how students handled a pa.:icular
feature across and within various problems. These additional error categories are described

below, and the results presented in Table 2.

20

16 Programming

Table 1. Errors (Mean Number) on Each Problem of the BASIC Test

Simple One Line Command Problems

1 2 3 4 5 6 7 8 9 Total

Exp. .13 .13 .53 .11 .25 .71 .88 .66 .27 3.67

Cont. .08 .11 .72 .16 .22 1.14 .88 1.13 .49 4.92

Diff. .05 .02 -.19 -.05 .03 -.43*** -.00 .47 -.22 1.25*
D/S.D .32

Hand Execution Problems ilejaugairTL Problem

10 11 13 Total 12

Exp. .28 .74 1.65 2.67 .61

Cont. .73 1.47 1.94 4.14 1.05

DR. -.45*** -.73*** -.29* -1.47** -.44"`

D/S.D. .61 .48

Production Problems Ali Problems

14 15 16 Mal Mal

Exp. 1.13 2.83 3.41 7.36 14.31

Cont. 1.60 3.11 5.07 9.77 19.88

Dill. -.47* -28 -1.561 -2.41* -5.57***

D/S.D. .34 .45

Experimental Group (n120) p<.05
Control Group (n3.224) p<.01

p<.001

21

Programming 17

ItniStiale1111111111.1W121332Lraft=ila (Problems 1-9):

1. PRINT (Problems 1-2): The word PRINT is not present or is spelled incorrectly.
2. Quote (Problems 1 and 3); The string following the PRINT command is incorrect or is

not preceded by a quotation mark.
3. LET (Problems 4 - The word LET is not present or is spelled incorrectly.
4. Assignment (Problems 4 - 6): Toe assignment statement following the LET command

is incorrect.
5. ACTION (Problems 7'- 8): The expression following THEN in problem 7 is incorrect;

the expression between the FOR and NEXT commands in problem 8 is incorrect.
6. GOTO (Problem 9): The GOTO command or the line number following it is incorrect.
7. INPUT (Problem 3): The word INPUT is not p esent or incorrect.
8. MISC. (Problems 2,3,7,8): Various errors occuring in only one problem.

Hand - execution error categories (Problems 10, 11 and 13):

9. PrompUlnput (Problems 10, 1.1 and 13): The output generated from INPUT
statements does not include the correct prompt and/or input.

10. Output (Problems 10, 11, and 13): The output generated from PRINT statements is
incorrect.

11. Minor execution: Any execution errors not covered by other categories.
12. Format: Output Is not properly formatted.Debugging error categories (Problems 11,

12, 13):
13. Bug-11 (Problem 11): The correct ("ui.expected") output is not generated. This

category does not include categueies like minor execution, output and so on that
.were also scored in :Iroblam 11. The only-feature considered is the one directly
related to debugging.

14. Bug-12 (Problem 12): The correct INPUT statement is not added to the program (as
above, other "non-bug" categories are excluded from this category).

15. Bug-13 (Problem 13): The correct ("unexpected") output is not generated (as in
category 13, other "non-bug" categories are excluded).

Production ennualeggriee (Problems 14, 15 and 16)

16. Counter (Problems 14 and 15): The counter following the FOR command is
incorrect.

17. Action (Problems 14 and 15): The major action (PRINT X) is incorrect.
18. FOR (Problems 14 and 16): The FOR statement is missing or incorrect.
19. NEXT (Problems 14 and 16): The NEXT statement (NEXT X) is incorrect or missing.
20. Variables (Problems 14 and 16!: Incorrect number or type of variables used.
21. Extraneous (Problems 14, 15 and 16): The program includes unneeded commands

that interfere with the running of the program or that make the solution clumsy.
22. Minor syntax (Problems14, 15 and 16): This (.:ategory includes errors not covered

by other categories that ocur in more than one problem.
23. Misc. (Probkems 15, 16): Various error types appearing in only one problem.

Table 2 (next page) presents results from these individual error categories within and across

problems. Like the results presented in Table 1, these results indicate that the Metacourse
group made significantly fewer errors in each of the four major categories. However, they also

indicate that this did not occur unifomily within each major category. That is, the experimental
group, although never commiting significantly more errors than the control group, did not perform
significantly better than the controls on all error categories.

22

18 Programming,

TABLE 2. Types of Errors (Mean Number) on the BASIC Test

Simple One Line Command Errors (Problems 1-9)

1 2 3 4 5 6 7 8 9

PRINT QUOTE LEI AMOY A.C.I121 GO TO INPUT Misc, TOTAL

Exp. .04 .23 .45 .64 .70 .27 .21 1.14 3.67
Cont. .05 .22 .80 .72 .93 .49 .35 1.36 4.92
Diff. -.01 .01 -.35*** -.08 -.23" -.22- -.14** -.22 1.25**

Hand Execution Errors (Problems 10.11.13)

9 10 11 12 13
pROMPT-INPUT OUTPUT MINOR EX. mama TOTAL

Exp. .70 .13 .53 .04 1.40

Cont. 1.87 .08 .60 .06 2.60

Diff. -1.1r" .05 -.07 -.02 -1.20***

DelauciainoEroxs_aralalsras11.12,13.1.__

13 14 15
BUG-11 BUG -12 BUG -13 TOTAL

Exp. .48 .26 .78 1.53

Cont. .76 .48 .78 2.02

Diff. -.28*** -.221*** .00 -.49***

EraducIIoaloms(Eztlsms14.alf2)___
16 17

CouNT.AGIIQN

Exp. .48 .42

Cont. .58 .57

Diff. -.10 -.15

18
EQB.

.32

.64

-.32*"

19

NEXT

.34

.76

-.42***

20 21 22
MAI EXIBA. MIMI.
.52 1.02 .96
.74 1.35 1.16

-.22" -.33** - .10

23
!ASO, TOTAL

3.30 7.36

3.98 9.77

-.68 -2.41**

Experimental Group (n120)
Control Group (n -224)

' p<.05
** p<.01

.p<.001

1MINEIM

23

Programming 19

With respect to the "simple one line command errors" (in the first 9 problems) the
experimental group did no better than the controls on a number of simple error categories such as
PRINT and quote and assigning a value that a variable should take; however, they made about half
the errors of the control group when producing simple LET statements (error category 3) and
about one quarter less errors than the controls in specifying the action of simple IF/THEN

statement or FOR loop (category 5).

As noted above, the experimental groups made significantly fewer hand execution errors on
problems that required creating a screen display when given a program (Problems 10, 11 and 13).
It appears that the experimental groups' superiority is We to its ability to represent what a prompt
and input statement look like on the screen (Error category 9), since there were no differences in

the output , minor execution and format error categories (10,11,&12).

If we in turn ignore the previous error types that may occur during hand execution and look

specifically at the aspects of execution that are directly related to program bugs, we find that the
experimental group is significantly better at detecting unexpected output (Error category 13 from
the Garden Path problem). They are no better, however, at detecting the parallelism bug
(Category 15). Bug-12 is perhaps a more realistic debugging problem. The students were given a
program and simply asked to correct as well as find a bug. In this situation, the experimental group

was again significantly better than the non-metacourse group.

The final set of error categories to be considered are those related to the production of
whole programs. When given three programming problems, the group with Metacourse training
handled FORMEXT loops better, was better able to choose the correct number and type of
variables to use and produced significantly fewer unnecessary statements (error categories 18
through 21). There were no signficant differences between the two groups on the remaining
production error types. As was the case with all other variables analyzed in this study, the control
group did not make significantly fewer errors in any of the categories investigated.

Transfer

As noted in our previous reports, while the cognitive posttest provided an occasion to
examine possible transfer of cognitive skills from programming instruction it should be recalled

that such a finding was not necessarily expected from the Metacourse treeatment. Most research
on the impact of programming instruction on cognitive skills has not found substantial gains,
except under very special conditions (ie. specific emphasis on transfer throughout a program,
one-on-one tutoring, and tests composed of problems formally similar to those encountered in
the programming course). In contrast, the Metacourse was designed specifically to advance
programming skills rather than l'a promote general transfer. Nonetheless, the data presented an
opportunity to explore the issue within this limited context.

Impact on General Cognitive Skills

As indicated previously the general cognitive tests were composed of 6 separate subtests

(See Appendix D). There was almost no variability of the Attribution of Intellectual Responsibility

subtest. Both experimental and control groups attributed an average of betwen 7.7 and 7.9

20 Programming

questions (out of a possible 10) to internal factors, both on pre and posttests. Analysis by positive

or negative outcomes yielded similar results. Thus most of our sample attributed their successes
and their failures primarily to internal causes, both prior to and after the BASIC programming

course. This variable was therefore excluded from all further analyses.

Table 3 (next page) presents the performance of each group on each of the other 5 subtests
and their total score for both pre and posttests.

As indicated previously the control group made significantly fewer errors on the pretest
overall than the experimental group (p<.001). Analysis by subtests indicated that this superiority
manifested itself on three of the five subtests (conditional reasoning, precise visual description,
and repeats and decides), while no initial differences were found on the visual planning or

professors/students problems.

Surprisingly the experimental group improved by about three fewer errors on the posttest,

compared to virtually no gain for the control group. It is unlikely that this highly significant outcome
(p<.001) would be due merely to regression to the mean. Analysis of the data from the
component tests indicates that this result is due almost entirely to the considerable improvement
of the experimental group on the Repeats and Decides subtest, compared to a modest decline in
performance on the part of the control group on that same problem. Thus some evidence of
transfer was observed, but it occurred only on the problem most closely related in its formal

structure to that of producing coherent comands in a programming language.

leachartggaammibilmfgaggurift

Since this study was conducted within the laboratory sites context described earlier, we

received frequent feedback from the teachers concerning the metacourse materials. The
teachers were in general quite positive in their evaluation of the revised metacourse. The utility of
the visual model of the computer world, the purpose, action, syntax analysis and the emphasis on
patterns received the most praise. The length of some lessons, and the difficulty of integrating
these long, rather rigid lessons smoothly into their normal course were most often cited as

negative features. Many teachers indicated that they wanted more freedom thanthe tightly
controlled conditions of the experiment permitted. It was apparent that infusing new concepts
into their normal lessons is a skill not quickly mastered, and while we would expect easier
integration "the second the around," future interventions need to address these concerns.

.

Discussion

The large scale study reported here was undertaken in order to assess the effects of a
" metacourse" which was designed to enhance novices' learning of BASIC by providing a small

number of key concepts and strategies that, our clinical research revealed, many students fail to

acquire on their own (Petidns,.Hancock, Hobbs, Martin, & Simmons, 1986; Perkins & Martin, 1983;

Perkins, Martin , & Farady, 1986; Perkins, Farady, Hancock, Hobbs, Simmons, Tuck, & Villa,1986).

A pilot study reported in Perkins, Farady, Simmons & Villa (1986), employing an earlier version of
the metacourse, although encouraging, produced little hard evidence on its effectiveness. It was

hoped that the current study would be able to provide stronger evidence on the issue.

Programming 21

TABLE 3. Errors (Mean Number) on Problems o the Cognitive Pre-
and Post-tests.

Problem Type

Conditional Floasoning Visual Planning

& posttest Clain Pretest Posttest culla

Exp. 1.71 1.56 .15 6.24 4.92 1.32

Cont. 1.36 1.33 .03 5.26 4.81 0.45

Diff. .35** .23 .12 .98 .11 .87

' ; 11 :

Professors/Students PagiragaisuaLaitsrattio.__
Pretest Posttest Clain Prates/ Posttest Slain

Exp. .72 .76 -.04 2.87 2.63 .24

Cont. .68 .54 .14 2.02 2.03 -.01

Diff. .04 .22*** -.18* .85** .60* .: .25

Problem Type

Repeats and Decides Total

Pretest Posttest Pretest Posttest Clain

Exp. 4.84 3.40
.Gain

1.44 16.34 13.22 3.12

Cont. 2.95 3.53 -.58 12.34 12.29 0.05

DM. 1.89*** -0.13 2.02 4.00*** .93 3.07`-

Experimental Group (n -122)
Control Group (n.219) **

p<.05
p<.01
p<.001

26

22 Programming

As in our previous report it is appropriate to consider the three questions: Did the
Metacourse prove "teachable", leading to an implementation that smoothly provided the intended

concepts and practice in their use? Did the Metacourse have the hoped-for impact on students'

mastery of programming? Did the Metacourse, or the normal programming instruction in the

control groups; have a cognitive impact beyond the targeted instruction? Finally questions of

possible long term effects, and future directions should also be briefly considered. ,

leaching. Once again the data indicate that at least for experienced teachers under

conditions of considerable support the Metacourse was quite teachable and could be integrated

into the normal curriculum in BASIC. Although the Metacourse lessons produced a varietyof

differences in teacher style of presentation as well as student behavior, compared to the normal
lessons, both teachers and students appeared to adapt well to the new material with a number of
indicators pointing to effective classes. Further it may well be the case that some of these

differences in observed behaviors (e.g., amount of student-teacher interaction) might be due to

the fact that this was the first time the teachers used the materials, and that such differences may

diminish as teachers get more familiar with the material.

The evidence on the extent to which the instructors were able this first time through to
"infuse" the key Metacourse concepts into their entire course is not as clear. We did find that

during the Metacourse lessons teachers referred to earlier key concepts quite often, but the

results are not clear from the limited number of non-Metacourse lessons we couldobserve as to

how often these concepts were used in regular classes. We did note a general absence of

bridges or applications of these concepts to any areas outside of the programming problems
themselves. It seems clear that deliberate efforts have to be orchestrated if such bridges are to be

built.

Impact on programming mastery. it is clear that our experimental groups evidenced a

considerable advantage in their general competence as beginning BASIC programmers

compared to the control groups. Further, the results indicate that this improvement is manifested
on a variety of programming skills, such as: use of correct syntax to perform simple operations,

ability to trace the actions of a program through hand execution, and the ability to debug and

produce simple programs. While the Metacourse did not produce enhanced performance on

every problem, e.g., detecting the "parallelism bug" (Pea,1985), it did produce fewer errors on a

variety of significant problems typical of those encountered in an introductory BASIC course.

What is not so apparent is the cause of the improved performance. A number of possibilities are

plausible, and the results may well be due to a combination of factors.

We would hope that the Metacourse with its emphasis on the students' development of

mental models through which they understand what the computer does, strategies by which to

organize their problem-solving efforts, etc. played a significant role. However, it must be
acknowledged that the "laboratory sites" intervention of which this study was a part was an atypical

treatment in that the participating teachers received much more support than is normally the case

when a new curriculum intervention is introduced. Further, we could not randomly assign
teachers to treatments. The laboratory site high school programming teachers were all required to

use the Metacourse, while the control group was formed by soliciting volunteer teachers at similar

high schools. While the teachers in both groups were experienced teachers of BASIC, it is

27

Programming 23

possible that our treatment teachers were simply a group of exceptionally talented instructors who

could produce large gains even with a treatment with which they were unfamiliar. One should
note that our study, like most in the field, pits teachers using a treatment program for the first time
against controls who employ their "normal" curriculum which they have typically worked through

many times.

Another study, currently in progress, should help resolve some of these ambiguities. In this

study the revised Metacourse is being used by 9 other teachers in 7 new high schools under

conditions that more nearly duplicate normal classroom innovations. That is, these teachers have
been given the Metacourse along with some "Metacourse memos" (notes to teachers on
experiences teaching with the Metacourse), and are provided with no other supports. The same
assessment instrumonts have been employed as in the previous study. The results from this
study should help clarify the significant factors influencing the improved performance in BASIC.

Transfer. Although our results were in general consistent with most of the literature, in that

there was little evidence of transfer either on most cognitive tasks or on our affective measure, we

did obtain evidence ci transfer on one subtest that was structually somewhat similar to a typical
programming task It may also be the case that an affective instrument more specifically focused
on students attitudes concerning errors may yet reveal some changes in this realm.

As we have pointed out previously, we believe a kind of tradeoff may exist between teaching
for programming competency and teaching for transfer of cognitive skills from programming
(Perkins, Schwartz,& Simmons,in press). The metacourse as currently designed still focuses on
the development of programming competency rather than transfer of general cognitive skills. We
provide little that does not have direct bearing on programming competency. The next section
discusses some future directions that may affect this balance.

Future Directions. While the results obtained in this study are encouraging, even the

performance of the treatment groups on our BASIC end of semester test left considerable room
for improvement (77% correct responses). Further, teachers comments made it clear that, though
valuable, the Metacourse in its current 9 lesson format makes both the integration into their normal

curriculum, and the infusion of key concepts throughout the term, a considerable challenge.
Students still often exhibit an inert, rather than active knowledge of the programming enter-ise.
This "fragile" knowledge does not permit optimal use in contexts when it should be app _ien

within the discipline of programming let alone in other problem solving realms. The prr amming

research group at ETC is currently developing a "second generation metacourse", to address

some of these concerns.

This second generation metacourse is built upon a "language" rather than a "lesson" model.
Thus rather than a collection of fully worked out lessons, a number of short modules introduce
the key concepts, while other modules focus explicitly, on how such concepts can be practiced or
"infused" throughout the semester. Finally a number of optional modules attempt to illustrate how

bridges can be made to academic and "real life" problems, thus encouraging transfer to more
general cognitive skills. While providing teachers more freedom to utilize the Metacourse in their

own fashion, it is designed to make more explicit and hopefully available to both teachers and
students the core elements of our approach and the rationale behind them. Such aids as an

. 28

24 Programming

"animated computer world" with an agent performing simple operations on information, icons,

metaphors, and posters are all being considered as metacognitive supports. This second
generation language model metacourse will be empirically tested in the near future.

What has become more apparent as we have interacted with teachers is that many of them

share a goal of teaching their students in some sense "what computers and programming
languages are really all about", "how they can be used as problem-solving tools" and not just the
syntax of a particular programming language Ike BASIC. It may be the case that the achievement

of this goal through the design of a second generation metacourse is also more compatible with
the development of general cognitive skills, and that a powerful pedagogy of programming
focusing on attention to mental models, strategies, etc. may lead to more success at achieving

both programming competence and transfer.

29

Programming 25

References

Beveridge, M. & Parkins, E. (1987). Visual representation in analogical problem solving.
Memory and Cognition, a 230-237.

Boner, J. & Soloway, E. (1985). Pre-Programming knowledge: A_major source_gt

misconceptions in novice programmers. Pittsburgh, PA: Learning Reserach and

Development Center. (ERIC Document Reproduction Service No. ED 258 805.)

Clement, J., Lochhead, J., & Monk, G. (1981). Translation difficulties in learning
mathematics. American Mathematical Month ly,a 26-40.

Clements, D.H. (1085, April). Effeclsasa lggo rinncoawitgnainelecogna ue
skills. and achievement. Presentation at the American Educational Research

Association conference, Chicago, Illinois.

Clements, D.H., & Guib, D.F. (1984). Effects of computer programming on young
children's cognition. Journal of Educational Pyschology,B(6), 1051-1058.

DuBoulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57-73.

DuBoulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass box:
Presenting computing concepts to novices. International Journal of Man-Machine
Studies, II 237-249.

Dweck, C.S., & Licht, B.G. (1980). Learned helplessness and intellectual achievement.
In J. Garbar & M. Seligman (Eds.), Human Helplessness. New York: Academic

Press.

Ehrlich, K., Soloway, E., & Abbot, V. (1982). Transfer effects from programming to
. . ab roblems: A preliminary study (Report no. 257). New Haven: Yale

University Department of Computer Science.

Gentner, D., & Stevens, A.L. (Eds.). (1983). Mental Models. Hillsdale, New Jersey:

Lawrence Erlbaum Associates.

Johnson-Laird, P.N. (1983). Mental Models. Cambridge, Massachusetts: Harvard

University Press.

Joni, S.A., & Soloway, E. (1986). But my program funs!: Discourse rules for novice
programmers. Journal of Educational Computing Research, 2(1), 95-125.

30

26 Programming

Kurland, D.M., Clement, C., Mawby, R., & Pea, R.D. (1987). Mapping the cognitive
demands of learning to program. In D. N. Perkins, J. Lochhead, & J. Bishop (Eds.),
Thinking: The second international conference, (pp. 333-358). Hillsdale, New

Jersey: Eribaum.

Kurland, D.M., Pea, R.D., Clement, C., & Mawby, R. (1986). A study of the development
of programming ability and thinking skills in high school students. New York: Bank

Streei College of Education, Center for nhildren and Technology. Also, Journal of
Educational Computing Research, h: ,-,r-ass.

Linn, M. C. (1985). The cognitive consequences of programming instruction in
classrooms. Educational_Researcher. IA, 14-29.

Mawby, R. (1987). Proficiency conditions for the development of thinking skills through
programming. In D. N. Perkins, J. Lochhead, & J. Bishop (Eds.), Thinking: The

second intemationaLconferenca (pp. 359-371). Hillsdale, New Jersey: Eribaum.

Mayer, R.E. (1976). Some conditions of meaningful learning for computer programming:
Advance organizers and subject control of frame order. Journal of Educational
Psychology, fil, 143-150.

Mayer, R.E. (1981). The psychology of how novices learn computer programming.
Computing_Surveys, no 1), 121-141.

Mayer, R.E. (1985). Learning in complex domains: A cognitive analysis of computer
Programming. The Psycho 12, 89-130.

Pea, R.D. (1986). Language-independent conceptual "bugs" in novice programming.
Journal of Educational Comouting Research, 2(1), 25-36.

Pea, R. D., & Kurland, D.M. (1984a). On the cognitive effects of learning computer
programming. New Ideas in Psychology, 2(2), 137-168.

Pea, R.D., & Kurland, D.M. (1984b). Loco_oroararnming and the development of planning

skills (Report no. 16). New York: Bank Street College.

Perkins, D.N. (1986a). Knowledaeasnesion. Hillsdale: new Jersey: Lawrence Eribaum

Associates.

Perkins, D.N. (1986b). Knowledge as design: Teaching thinking through content. In J.
B. Baron & R. S. Sternberg (Eds.), Teaching thinking skills: Theory and practice,

(pp. 62-85). New York: W. H. Freeman.

31

Programming 27

Perkins, D.N., Farady, M., Hancock, C., Hobbs, R., Simmons, R., Tuck, T., & Villa, E.
(1986). k II 11 4 1,. I II : I : 1 .11 . Ilk : : II : II k se

=um (Tech. Report no. 86-7). Cambridge, Massachusetts: Harvard
Graduate School of Education, Educational Technology Center.

Perkins, D.N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice
programmers. In E. Soloway & S. lyengar (Eds.), .Empirical studies of programmers

(pp. 213-229). Norwood, New Jersey: Ablex.

Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of
learning in novice programmers. journal of Educational Computing Research,
2(1), 37-56.

Perkins, D.N., Martin F., & Faraday, M. (1986). Loci of difficulty in learning to Drogram

(Tech. Report no. 86-6). Cambridge, Massachusetts: Harvard Graduate School of
Education, Educational Technology Center.

Perkins, D.N., Schwartz, S., & Simmons, R. (in press). Instructional strategies for the
problems of novice programmers. In Mayer, R. (Ed.), Teaching and learning

=mailer arasuamminaUdulliplaissearchgersactimes. Hinsdale, New Jersey:
Lawrence Erlbaum Associates.

Salomon, G., & Perkins, D.N. (in press). Transfer of cognitive skills from programming:

When and how? IsturnaLgLEduralloaLCQmmlinglevarG1

Sleeman, D., Putnam, R., Baxter, J., & Kuspa, L (1986). Pascal and high school
students: A study of errors. Journal of Educational Computing Research, 2(1), 5-

23.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering., SE-10(5), 595-609.

Soloway, E., Lochhead, J., & Clement, J. (1982). Does computer programming enhance
problem solving ability? Some positive evidence on algebra word problems. In R.
Seidel, R. Anderson, & B. Hunter (Eds.), Computer literacy. New York: Academic

Press.

Zelman, S. (1985, April). IflaYitilddiffer80216801111=132121glitriaaMillS12121i=r.
Motivational constraints to learning LOGO, Presented at the American Educational

Research Association Annual Meeting, Chicago, Illinois.

32

I

Appendix A

Paper Computer World

33

0
WORKSHEET 5-
PAGE 2

34

the program. (c) Change the . print statement so that

explains the output.The Computer World

10

20

30

40

50

60

70

50

90

100

110

120

130

140

Program Area

PRINT "HOW MANY PEOPLE?"

INPUT P

G = 0

PRINT "PLEASE ENTER THE NUMBER"

PRINT "OF SLICES OF PIZZA THAT

PRINT "EACH PERSON WANTS"

FOR I = 1 to P

INPUT N

If N >3 THEN G = G 1

NEXT I

PRINT "THE ANSWER IS";G

Variables Area

1,4 V 14 SAP,OVAIVV.A4 VIII Vaielo)VII,AY.MA thYs0,111. .16.VIA% VP Inv I:141A Va ee
II I Ilt MI HI Ill. H lit fitqf t II t t Htlitil'fHlt UM! it !If t H t 4

0

C1010130101011300100100100000
ornononicMcIatinommocloa
00113000100001000010011300
00101:10013000101:10131001000

IP II

so

M
Ia

Assume User Types:

4

2

1

5

4

Appendix B

Example of Purpose, Action, and Syntax
from Mini-Manual

36

C

III. L E T

PURPOSE: You use LET in a program to make the computer save information in
its memory for later use. The information is stored in a variable. Think
of a variable as a box with name. Boxes with names ending in $ hold only
strings. Boxes without the $ hold only numbers.

SYNTAX ACTION

LET Variable Name = Number

for example:
LET X = 5

SCREEN DISPLAY WORK SPACE

Is it really there?
PRINT X 5

LET Variable Name = Legal Numerical Expression

for example:
LET Z =5 41- (I' + X)

Is it really there?
PRINT Z

LET Z = Z 2

Is it really there?
PRINT Z .4.o+No a

5 is stored in the X pox

1 + a is 6
5 * / gets vou to 30
30 is stored in the Z box

30 2 = 28
28 is the new value for Z.
which is stored in the Z box

LET String Variable Name = String
for example:
LET A$ = "SIZE"

LET B$ = ."/"

Are they really there?
PRINT AS

PRINT BS

SIZE

SIZE is stored in the A$
box.

/ is stored in the 8$ box.

Note: You can leave off the LET statement, and get the same result.
for example:
X = 2

D$ = "DAYS"

37

2 is stored in tne X box.

DAYS is stored in the
D$ box

Appendix C

Example of a "Pattern" from
the Mini-Manual

38

PATTERNS

Summing Pattern

Purpose: To find the sum of a series of numbers

Structure: Example:
10 REM ADDS 5 NUMBEK

lir 1 = 0 20 LET 1 = 0

...

<begin loop> 30 FOR I = 1 TO 5

... 40 PRINT "ENTER A NUMBER"
50 INPUT N

LET T = T + <number to add> 60 LETT=T+N

<end loop> 70 NEXT I

Action: The summing variable (in this case, T) is first set to 0. Each time
the loop body is executed, another number is added to the summing variable.
When the loop is exited, the summing variable contains the total...

I ..

. Conting Pattern

Purpose: To count the number of times something is true

Structure:

LETC=0

<begin loop>

IF <condition> THEN LET C = C + 1

Example:
10 REM COUNTS NS
20 LET C = 0

30 FOR I = 1 10 5
40 PRINT "ENTER A GRADE"

50 INPUT G$

60 IF G$. "A" THEN LET C = C + i

<end loop> 70 NEXT I

Action: The counting variable (in this case, C) is first set to 0. Each time
the loop body is executed, you test a condition. If that condition is true, the
counting variable is increased by 1.

Appendix D

Cognitive Skills Pre-/Post-Test

40

Version A

Name:
Date:

GENERAL INSTRUCTIONS

Our class has been chosen to contribute to some very important educational

research. A group of people at Harvard University is attempting to discover

the best techniques of teaching BASIC programming so that it will be more

interesting and understandable to students.

This posttest, given now at the end of the course, will help them to

determine the differences among all of you who will be participating.

The Harvard Group wants you to know how much they appreciate your help and

they are looking forward to your comments and the wonderful information

they will gather through your efforts.

This is a 40minute test comprised of a short questionnaire and a number

of problems.

Do not start the test until your teacher says "go".

You may work through the test as quickly as you want. After finishing one

part, go on to the next.

However, we want to be sure you try all parts. So after the time for a

particular section is up, the teacher will say, "please go ahead to section

A, B, C, D, E, or F (whatever it is) now if you haven't already".

You can go back to work on a previous section if you have extra time.

Ask any questions you have now.

41

A. CHOOSE ONE ANSWER 5 Minutes

Pick the answer that best describes what happens to you or how you feel.

There are no right or wrong answers.

1. When you read a story and can't remember much of it, is it usually

a. because the story wasn't well written, or

b. because you weren't interested in the story?

2. If a teacher says to you, "Your work is fine", is it

a. something teachers usually say to encourage pupils, or

b. because you did a good job?

3. Suppose you weren't sure about the answer to a question your teacher

asked you, but your answer turned out to be right. Is it likely to

happen
a. because she wasn't as particular as usual, or

b. because you gave the best answer you could think of?

4. When you read a story and remember most of it, is it usually

a. because you were interested in the story; or

b. because the story was well written?

5. If the teacher didn't pass you to the next grade, would it probably be

a. because she "had it in for you", or

b. because your school work wasn't good enough?

6. Suppose you don't do as well as usual in a subject at school. Would

this probably happen
a. because you aren't as careful as usual, or

b. because somebody bothered you and kept you from working?

7. If a boy oi a girl tells you that you are bright, is it usually

a. because you thought up a good idea, or

b. because they like you?

8. Suppose you became a famous teacher, scientist or doctor. Do you

think this would happen
a. because other people helped you when you needed it, or

b. because you worked hard.

9. Suppose you are showing a friend how to play a game and he has trouble

with it. Would that happen

a. because he wasn't able to understand how to play, or

b. because you couldn't explain it well?

10. If you can't work a puzzle, is it more likely to happen

a. because you are not especially good at working puzzles, or

b. because the instructions weren't written clearly enough?

42

D. DAYS OF THE WEEK
6 Minutes

1. If the day before the day after tomorrow is Sunday, what is the day

before yesterday?

2. Suppose a week had no Wednesday. If today is
Tuesday, the day after

tomorrow is what?

3. Suppose today is the day before Tuesday. What is the day before yesterday?

1
4. If tomorrow were Wednesday instead of Sunday, yesterday would be Monday

instead of what?

C. VISUAL PUZZLE

5 Minutes

How many triangles does the figure below contain',

$

D. FORMULA QUESTION

4 Minutes

For every 3 people who drink coffee, 1 person drinks tea. Suppose C

stands for the number of people who drink coffee. T stands for the number

of people who drink tea. Circle the equation that states the relationship

between how many people drink
coffee and how many people drink tea.

1 = C/T
T a 3c C 2 T/3

43
C = 31 3 s C - I

E. DESCRIPTION

8 Minutes

Examine carefully the pictures of the items shown in the following figure.

Write a description of Item "G" to someone, so that he/she could pick out

"G" from all the other shapes. The other person's paper doesn't have the

letters beside to identify each figure, and the figures are all mixed up.

Write out 'sour descriptions of "G° below.

ImairnInnais
1111111111111111111111
111111111111111111111111111

111111111111111111116111
spasm

f.

K.

H.

K.

o o -o 0
O o b
O 000

a a a 0

O 0

O 0 0 0

r-0-0 0 0
0 00. 00 0 0

44

F.

z.

L.

70 0

0 0

F. REPEATS AND DECIDES
10 Minutes

For the next problem, you have to learn about repeats and decides before

you do the problems.

REPEAT: A repeat it. an instruction to do something over and over again,

until some condition is met. For instance:

REPEAT Jump up and down until you've done it 17 times.

DECIDE: A decide is an instruction to choose which one, of two or more

conditions exist, and then doing something once, based on this choice.

For instance:

DECIDE Decide if you have homework. If you do, stay home and

do it. If you don't, then go see a friend.

WRITING DIRECTIONS USING REPEATS AND DECIDES: You can write directions

using repeats and decides. Here is on example that uses one repeat and

one decide instruction.

Suppose you want to add up all the money in everybody's pocket in the room

and shout "Hurrah!" if the total is over $100.

Here are the directions:

REPEAT Add on the money in the next person's pocket until you

have covered all the people in the room.

DECIDE Decide if you have more than $100. If you do, shout,

"Hurrah!". If you don't, then be quiet.

Other problems may require more than one repeat and/or decide.

Now go to the next page for the problem.

45

It's Saturday and you want to go out and see the movie called: "The Crazy

Computer". You have a newspaper that lists the movie theaters alphabetically

with what is playing at each. If you can't find the movie anywhere then

turn on the T.V. to a ball game. If you find the movie then start calling

your friends until one says he or she will go with you. If you find one

willing to go, then make a date and go. If not stay home and watch the

ball game.

If you have extra time, go back and complete sections you did not finish

or check your work.

46

Appendix E

BASIC Test

47

NAME DATE

DIRECTIONS -- Work quickly but carefully on the following problems. If

you get stuck on one problem, go on to the next.

Write the Basic commands that will cause the following to happen.

An example is done for you below.

EXAMPLE. The following word appears on the screen:

Hello

1. The following message is to be printed on the screen:

The answer is cat

2. The number 5 is to appear on the screen.

3. The program ashs the user for a number. (The number will be stored in

a variable.)

4. The variable X is set to the value 2.

5. The variable X is set to 3 more than Y.

6. A variable (give it whatever name you like) is set to the following:

THE ANSWER IS KNIGHT

r

1

48

i

7. When the value of 2 is greater than 3, the following message is

printed: L = 5

Complete the next 2 programs by filling in the blanks with the appropriate

code.

8. This program uses a FOR statement to print the number 6 ten times.

(Fill in the blanks.)

10 FOR X = 1 TO

20 PRINT
30

9. The following is part of a larger program. What is needed in this

part of the program so that lines 220-230 are not executed? (fill in the

blank.)

210
220 Print "No"
230 Print "No"
240 Print "Yes"

10. During a run of the following program what will appear on the screen?

Suppose the user enters 16 for A.

10 PRINT "HOW OLD ARE YOU?"

20 INPUT A

30 IF A=15 THEN PRINT "TOO OLD"

40 IF A>15 THEN GOTO 60

50 IF A<15 THEN PRINT "LITTLE KID"

60 PRINT "RETIRE FROM SCHOOL"

70 END

screen display

11.-During a run of the
above'program what will appear on the screen?

Suppose the user enters 14 for A.
screen display

I

r

12. This program asks the user to enter the number of slices of bread

he/she has eaten and then shows on the screen the total number of calories

the bread contains. In this program S stands for number of slices of

bread, and C stands for calories. (Assume there are 70 calories in a slice

of bread.)

The program doesn't work. The output is not correct; it is always:

Number of slices
Total calories in bread

0

What is wrong with the program? Find the error(s) and correct the program.

100 PRINT "Number of slices"

110 LET C = S * 70

120 PRINT "Total Calories in bread"

130 PRINT C

140 END

13. The following program was writte.r to calculate weakly pay by multiplying

hours worked times hourly wage. P stands for pay, H for hours, and W for

wage. The user of this program tyys in 10 for hours and 4 for wage.

DUring the run what will the screen display show?

10 LET P = H * W

20 INPUT "HOURS "; H

30 INPUT "WAGE "; W

40 PRINT "PAY = "; P

50 END

50

3

screen display

I

iou will be writing 2 programs that do the same thing; they print out on

the screen the whole numbers from 1 to 10. The output will look like this:

1

2

3

4

5

6

7

8

9

10

In your first program, use a FOR/NEXT loop. In your second program create

the loop using an IF statement.

14. PROGRAM WITH FOR/NEXT LOOP 15. PROGRAM WITH IF STATEMENT

4

51

16. Each day, a grade school class of 20 students counts the number of

cartons of milk needed by the class. Write a program that will: 1) for

each of the 20 students ask how many cartons of milk he or she will drink,

and 2) calculate the total number of cartons needed by the class and print

the total on the screen.

52

5

Appendix F

Classroom Observation Sheet

53

1

OBSERVATION INSTRUMENT

Observer: Date:

School:
Teacher:
Beginning time: ending time

total class time:

control:
experimental: metacourse lesson #

ordinary class

taped? yes no

1. Write out an outline of the class as things happen. Try to note the

essential features such as major points made, method of presentation,

practice time, etc. Revise after class if necessary.

2

Instruction: Pease describe the behaviours indicated below on a 7 point

scale. For most examples, there are definitions and reference points
given. Feel free to assign ratings between the reference points, but use
whole numbers only (no fractions or decimal points). If a question is
unanswerable or somehow not applicable, please mark an "x" in the space.
(Where fitting, a brief explanation would be appreciated).

2. Amount of interaction between teacher and students

7 lots of interaction between students and teacher
4 average amount of interaction
1 little interaction

3. Amount of broadly beneficial interaction among students
7 much
4 some; a few comments between students
1 none

4. Amount of deleterious interaction among students

7 much
4 some; the usual amount of fooling around
1 none

5. Student responsiveness

7 students respond readily
4 students need to be coaxed
1 students are unwilling to participate, to answer or to

ask questions, etc.

6. Attentiveness of students

7 highly attentive to material/instruction
4 somewhat attentive, but also talking, etc
1 inattentive -- talking, doing other work

7. Percentage of students who seem to be engaged in class activities

55

8. Teacher student interaction (Give percentages)

a. Process oriented
b. Product oriented
c. Disciplinary

Teacher's role Students' role

9. Preparedness of students

7 students seem very well prepared and ready to move on

4 students seem adequately prepared
1 students seem to lack understanding requisite to

continuing

10. Write in the approximate percentages of the total time
spent in:

lecture
questions and discussion
demonstration
hand execution exercise
other exercises

(total should be 100%)

lecture teacher speaks

demonstration teacher demonstrates some aspect of programming
either on board or with overhead

handexecution students/teacher go over program line by line

other exercises-

11. Teachermaterial interface
7 teacher seems very comfortable and conversant with

material

4 teacher seems adequately comfortable with material

1 teacher seems uncomfortable with material

12. Mode of instruction

Give percentages.
highly interactive; teacher often asks for comments,
talks to and with students
combination of interactive and presentational
presentational; teacher describes, demonstrates,

models

56

3

1 4

13. Subjective, holistic rating of total effectiveness of

instruction

13a. Comment

14. Reference to other lessons

7 much reference to earlier lesson(s)

4 some mention of earlier lessons(s)

1 no mention of earlier lesson(s)

14a. If ideas from earlier lesson(s) were referred to, note which

15. Check: (use 1 for "yes" or 2 for "no") Were there any bridges or
applications stressed for which Basic Programming principles are used in:

a. other academic disciplines; which one(s):

b. problems in real life, outside school; which one(s):

How? Please note:

For experimental lesson classes only
Score using the following scale:

7: guided use, using it a lot
4: appropriate, right on target
1: no mention

16. Which basic principles from the Metacourse were referred to:

a. the paper computer

b. purpose, syntax, action

c. interaction between the user and the computer

d. the minimanual

e. patterns

f. program production using metacourse principles

g. other:

57

17. Percentage of the important naterial in this lesson
that was adequately covered.

Fidelity of lesson observed to lesson as written
7: taught almost exactly as written
4: the same or very similar content of lesson as written, but adapted

and paraphrased
1: almost unrecognizable as the same lesson

18. Introduction

19. Lecture

20. Participation
21. Explanation

22. Exercise

58

5

Appendix G

Student Questionaire

59

a

Previous Computing Experience NAME

Please answer the following questions concerning your experience with

computers. If you have a hard time answering any of these questions just

give it your best guess. The information will help us in our research,

and we appreciate your help with this project.

I) Have you ever taken a BASIC programming course before this semester?

Yes No

2) If you answered yes to number I: When did you take the course(es), how

long did the course(s) last and how often did the class(es) meet? (For

example, you might have had a BASIC course at a camp this past summer that

lasted for 6 weeks and met 3 times a week for 2 hours each class.)

3) Have you ever taken another programming course in a language other than

BASIC?

Yes No

4) If you answered yes to queEtion 2: What language(s) have you studied?

Logo If yes, how much?

Pascal If yes, how much?

Other (name of language) If yes: how much?

5) In what grade were you first introduced to computer languages (Logo,

Basic, etc)?

6) In what grade were you first introduced to computer applications(word-

processing, data bases, spreadsheets)?

7) Is there a computer in your home? If so, 1) what kind is it, 2) how often

do you use it, and 3) what 2 things do you use it for the most (for example,

games, programming, wordprocessing)?

60

